Connecting spatial and frequency domains for the quaternion Fourier transform

نویسندگان

  • Hendrik De Bie
  • Nele De Schepper
  • Todd A. Ell
  • K. Rubrecht
  • Stephen J. Sangwine
چکیده

The quaternion Fourier transform (qFT) is an important tool in multi-dimensional data analysis, in particular for the study of color images. An important problem when applying the qFT is the mismatch between the spatial and frequency domains: the convolution of two quaternion signals does not map to the pointwise product of their qFT images. The recently defined ‘Mustard’ convolution behaves nicely in the frequency domain, but complicates the corresponding spatial domain analysis. The present paper analyses in detail the correspondence between classical convolution and the new Mustard convolution. In particular, an expression is derived that allows one to write classical convolution as a finite linear combination of suitable Mustard convolutions. This result is expected to play a major role in the further development of quaternion image processing, as it yields a formula for the qFT spectrum of the classical convolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An uncertainty principle for quaternion Fourier transform

We review the quaternionic Fourier transform (QFT). Using the properties of the QFT we establish an uncertainty principle for the right-sided QFT. This uncertainty principle prescribes a lower bound on the product of the effective widths of quaternion-valued signals in the spatial and frequency domains. It is shown that only a Gaussian quaternion signal minimizes the uncertainty.

متن کامل

Quaternion Fourier Transform for Colour Images

The Fourier transforms plays a critical role in broad range of image processing applications, including enhancement, restoration, analysis and compression. For filtering of gray scale images 2D Fourier transform is an important tool which converts the image from spatial domain to frequency domain and then by applying filtering mask filtering is done. To filter color images, a new approach is im...

متن کامل

Quaternion Fourier Transform for Character Motions

The Fourier transform plays a crucial role in a broad range of signal processing applications, including enhancement, restoration, analysis, and compression. Since animated motions comprise of signals, it is no surprise that the Fourier transform has been used to filter animations by transforming joint signals from the spatial domain to the frequency domain and then applying filtering masks. Ho...

متن کامل

Assessment of the Wavelet Transform for Noise Reduction in Simulated PET Images

Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...

متن کامل

Instantaneous frequency and amplitude of complex signals based on quaternion Fourier transform

The ideas of instantaneous amplitude and phase are well understood for signals with real-valued samples, based on the analytic signal which is a complex signal with one-sided Fourier transform. We extend these ideas to signals with complex-valued samples, using a quaternion-valued equivalent of the analytic signal obtained from a one-sided quaternion Fourier transform which we refer to as the h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 271  شماره 

صفحات  -

تاریخ انتشار 2015